Цели и задачи реализации основной образовательной


Содержание курса математики в 7-9 классах (углубленный уровень)



Pdf просмотр
страница24/36
Дата25.08.2017
Размер5,01 Kb.
1   ...   20   21   22   23   24   25   26   27   ...   36
Содержание курса математики в 7-9 классах (углубленный уровень)
Алгебра
Числа
Рациональные числа
Сравнение рациональных чисел. Действия с рациональными числами. Конечные и бесконечные десятичные дроби. Представление рационального числа в виде десятичной дроби.
Иррациональные числа
Понятие иррационального числа. Распознавание иррациональных чисел. Действия с иррациональными числами. Свойства действий с иррациональными числами. Сравнение иррациональных чисел. Множество действительных чисел.
Представления о расширениях числовых множеств.
Тождественные преобразования
Числовые и буквенные выражения
Выражение с переменной. Значение выражения. Подстановка выражений вместо переменных.
Законы арифметических действий. Преобразования числовых выражений, содержащих степени с натуральным и целым показателем.
Многочлены
Одночлен, степень одночлена. Действия с одночленами. Многочлен, степень многочлена. Значения многочлена. Действия с многочленами: сложение, вычитание, умножение, деление. Преобразование целого выражения в многочлен. Формулы сокращенного умножения: разность квадратов, квадрат суммы и разности. Формулы преобразования суммы и разности кубов, куб суммы и разности. Разложение многочленов на множители: вынесение общего множителя за скобки, группировка, использование формул сокращенного умножения. Многочлены с одной переменной. Стандартный вид многочлена с одной переменной.
Квадратный трехчлен. Корни квадратного трехчлена. Разложение на множители квадратного трехчлена. Теорема Виета. Теорема, обратная теореме Виета. Выделение полного квадрата. Разложение на множители способом выделения полного квадрата.
Понятие тождества
Тождественное преобразование. Представление о тождестве на множестве.
Дробно-рациональные выражения
Алгебраическая дробь. Преобразования выражений, содержащих степени с целым показателем. Допустимые значения переменных в дробно-рациональных выражениях.
Сокращение алгебраических дробей. Приведение алгебраических дробей к общему знаменателю. Действия с алгебраическими дробями: сложение, умножение, деление.
Преобразование выражений, содержащих знак модуля.
Иррациональные выражения

195
Арифметический квадратный корень. Допустимые значения переменных в выражениях, содержащих арифметические квадратные корни. Преобразование выражений, содержащих квадратные корни.
Корни n-ых степеней. Допустимые значения переменных в выражениях, содержащих корни n-ых степеней. Преобразование выражений, содержащих корни n-ых степеней.
Степень с рациональным показателем. Преобразование выражений, содержащих степень с рациональным показателем.
Уравнения
Равенства
Числовое равенство. Свойства числовых равенств. Равенство с переменной.
Уравнения
Понятие уравнения и корня уравнения. Представление о равносильности уравнений и уравнениях-следствиях.
Представление о равносильности на множестве. Равносильные преобразования уравнений.
Методы решения уравнений
Методы равносильных преобразований, метод замены переменной, графический метод. Использование свойств функций при решении уравнений, использование теоремы
Виета для уравнений степени выше 2.
Линейное уравнение и его корни
Решение линейных уравнений. Количество корней линейного уравнения. Линейное уравнение с параметром.
Квадратное уравнение и его корни
Дискриминант квадратного уравнения. Формула корней квадратного уравнения.
Количество действительных корней квадратного уравнения. Решение квадратных уравнений: графический метод решения, использование формулы для нахождения корней, разложение на множители, подбор корней с использованием теоремы Виета. Биквадратные уравнения. Уравнения, сводимые к линейным и квадратным. Квадратное уравнение с параметром. Решение простейших квадратных уравнений с параметрами. Решение некоторых типов уравнений 3 и 4 степени.
Дробно-рациональные уравнения
Решение дробно-рациональных уравнений.
Простейшие иррациональные уравнения вида:
 
f x
a

;
 
 
f x
g x

и их решение. Решение иррациональных уравнений вида
 
 
f x
g x

Системы уравнений
Уравнение с двумя переменными. Решение уравнений в целых числах. Линейное уравнение с двумя переменными. Графическая интерпретация линейного уравнения с двумя переменными.
Представление о графической интерпретации произвольного уравнения с двумя переменными: линии на плоскости.
Понятие системы уравнений. Решение систем уравнений.
Представление о равносильности систем уравнений.
Методы решения систем линейных уравнений с двумя переменными графический метод, метод сложения, метод подстановки. Количество решений системы линейных уравнений. Система линейных уравнений с параметром.
Системы нелинейных уравнений. Методы решения систем нелинейных уравнений.
Метод деления, метод замены переменных. Однородные системы.
Неравенства

196
Числовые неравенства. Свойства числовых неравенств. Проверка справедливости неравенств при заданных значениях переменных.
Неравенство с переменной. Строгие и нестрогие неравенства. Доказательство неравенств. Неравенства о средних для двух чисел.
Понятие о решении неравенства. Множество решений неравенства.
Представление о равносильности неравенств.
Линейное неравенство и множества его решений. Решение линейных неравенств.
Линейное неравенство с параметром.
Квадратное неравенство и его решения. Решение квадратных неравенств: использование свойств и графика квадратичной функции, метод интервалов. Запись решения квадратного неравенства.
Квадратное неравенство с параметром и его решение.
Простейшие иррациональные неравенства вида:
 
f x
a

;
 
f x
a

;
 
 
f x
g x

Обобщенный метод интервалов для решения неравенств.
Системы неравенств
Системы неравенств с одной переменной. Решение систем неравенств с одной переменной: линейных, квадратных, дробно-рациональных, иррациональных. Изображение решения системы неравенств на числовой прямой. Запись решения системы неравенств.
Неравенство с двумя переменными. Представление о решении линейного неравенства с двумя переменными. Графическая интерпретация неравенства с двумя переменными. Графический метод решения систем неравенств с двумя переменными.
Функции
Понятие зависимости
Прямоугольная система координат. Формирование представлений о метапредметном понятии «координаты». График зависимости.
Функция
Способы задания функций: аналитический, графический, табличный. График функции. Примеры функций, получаемых в процессе исследования различных процессов и решения задач. Значение функции в точке. Свойства функций: область определения, множество значений, нули, промежутки знакопостоянства, четность/нечетность, возрастание и убывание, промежутки монотонности, наибольшее и наименьшее значение, периодичность. Исследование функции по ее графику.
Линейная функция
Свойства, график. Угловой коэффициент прямой. Расположение графика линейной функции в зависимости от ее коэффициентов.
Квадратичная функция
Свойства. Парабола. Построение графика квадратичной функции. Положение графика квадратичной функции в зависимости от ее коэффициентов. Использование свойств квадратичной функции для решения задач.
Обратная пропорциональность
Свойства функции
k
y
x

. Гипербола. Представление об асимптотах.
Степенная функция с показателем3
Свойства. Кубическая парабола.
Функции
y
x

,
3
y
x

,
y
x

.Их свойства и графики. Степенная функция с показателем степени больше 3.
Преобразование графиков функций: параллельный перенос, симметрия, растяжение/сжатие, отражение.
Представление о взаимно обратных функциях.
Непрерывность функции и точки разрыва функций. Кусочно заданные функции.

197
Последовательности и прогрессии
Числовая последовательность. Примеры. Бесконечные последовательности.
Арифметическая прогрессия и ее свойства. Геометрическая прогрессия. Суммирование первых членов арифметической и геометрической прогрессий. Сходящаяся геометрическая прогрессия. Сумма сходящейся геометрической прогрессии. Гармонический ряд.
Расходимость гармонического ряда.
Метод математической индукции, его применение для вывода формул, доказательства равенств и неравенств, решения задач на делимость.
Решение текстовых задач
Задачи на все арифметические действия
Решение текстовых задач арифметическим способом. Использование таблиц, схем, чертежей, других средств представления данных при решении задачи.
Решение задач на движение, работу, покупки
Анализ возможных ситуаций взаимного расположения объектов при их движении, соотношения объемов выполняемых работ при совместной работе.
Решение задач на нахождение части числа и числа по его части
Решение задач на проценты, доли, применение пропорций при решении задач.
Логические задачи
Решение логических задач. Решение логических задач с помощью графов, таблиц.
Основные методы решения задач
Арифметический, алгебраический, перебор вариантов. Первичные представления о других методах решения задач (геометрические и графические методы).
Статистика и теория вероятностей
Статистика
Табличное и графическое представление данных, столбчатые и круговые диаграммы, извлечение нужной информации. Диаграммы рассеивания. Описательные статистические показатели: среднее арифметическое, медиана, наибольшее и наименьшее значения числового набора. Отклонение. Случайные выбросы. Меры рассеивания: размах, дисперсия и стандартное отклонение. Свойства среднего арифметического и дисперсии. Случайная изменчивость. Изменчивость при измерениях. Решающие правила. Закономерности в изменчивых величинах.
Случайные опыты и случайные события
Случайные опыты (эксперименты), элементарные случайные события (исходы).
Вероятности элементарных событий. События в случайных экспериментах и благоприятствующие элементарные события. Вероятности случайных событий. Опыты с равновозможными элементарными событиями. Классические вероятностные опыты с использованием монет, кубиков. Представление событий с помощью диаграмм Эйлера.
Противоположные события, объединение и пересечение событий. Правило сложения вероятностей. Случайный выбор. Независимые события. Последовательные независимые испытания. Представление эксперимента в виде дерева, умножение вероятностей.
Испытания до первого успеха. Условная вероятность. Формула полной вероятности.
Элементы комбинаторики и испытания Бернулли
Правило умножения, перестановки, факториал. Сочетания и число сочетаний.
Треугольник Паскаля и бином Ньютона. Опыты с большим числом равновозможных элементарных событий. Вычисление вероятностей в опытах с применением элементов комбинаторики. Испытания Бернулли. Успех и неудача. Вероятности событий в серии испытаний Бернулли.
Геометрическая вероятность
Случайный выбор точки из фигуры на плоскости, отрезка и дуги окружности.
Случайный выбор числа из числового отрезка.
Случайные величины

198
Дискретная случайная величина и распределение вероятностей. Равномерное дискретное распределение. Геометрическое распределение вероятностей. Распределение
Бернулли. Биномиальное распределение. Независимые случайные величины. Сложение, умножение случайных величин. Математическое ожидание и его свойства. Дисперсия и стандартное отклонение случайной величины; свойства дисперсии. Дисперсия числа успехов в серии испытаний Бернулли. Понятие о законе больших чисел. Измерение вероятностей и точность измерения. Применение закона больших чисел в социологии, страховании, в здравоохранении, обеспечении безопасности населения в чрезвычайных ситуациях.
Геометрия
Геометрические фигуры
Фигуры в геометрии и в окружающем мире
Геометрическая фигура. Внутренняя, внешняя области фигуры, граница. Линии и области на плоскости. Выпуклая и невыпуклая фигуры. Плоская и неплоская фигуры.
Выделение свойств объектов. Формирование представлений о метапредметном понятии «фигура». Точка, отрезок, прямая, луч, ломаная, плоскость, угол, биссектриса угла и ее свойства, виды углов, многоугольники, окружность и круг.
Осевая симметрия геометрических фигур. Центральная симметрия геометрических фигур.
Многоугольники
Многоугольник, его элементы и его свойства. Правильные многоугольники.
Выпуклые и невыпуклые многоугольники. Сумма углов выпуклого многоугольника.
Треугольник. Сумма углов треугольника. Равнобедренный треугольник, свойства и признаки. Равносторонний треугольник. Медианы, биссектрисы, высоты треугольников.
Замечательные точки в треугольнике. Неравенство треугольника.
Четырехугольники. Параллелограмм, ромб, прямоугольник, квадрат, трапеция.
Свойства и признаки параллелограмма, ромба, прямоугольника, квадрата. Теорема
Вариньона.
Окружность, круг
Их элементы и свойства. Хорды и секущие, их свойства. Касательные и их свойства.
Центральные и вписанные углы. Вписанные и описанные окружности для треугольников.
Вписанные и описанные окружности для четырехугольников. Вневписанные окружности.
Радикальная ось.
Фигуры в пространстве (объемные тела)
Многогранник и его элементы. Названия многогранников с разным положением и количеством граней. Первичные представления о пирамидах, параллелепипедах, призмах, сфере, шаре, цилиндре, конусе, их элементах и простейших свойствах.
Отношения
Равенство фигур
Свойства и признаки равенства треугольников. Дополнительные признаки равенства треугольников. Признаки равенства параллелограммов.
Параллельность прямых
Признаки и свойства параллельных прямых. Аксиома параллельности Евклида.
Первичные представления о неевклидовых геометриях. Теорема Фалеса.
Перпендикулярные прямые
Прямой угол. Перпендикуляр к прямой. Серединный перпендикуляр к отрезку.
Свойства и признаки перпендикулярности прямых. Наклонные, проекции, их свойства.
Подобие
Пропорциональные отрезки, подобие фигур. Подобные треугольники. Признаки подобия треугольников. Отношение площадей подобных фигур.
Взаимное расположениепрямой и окружности, двух окружностей.
Измерения и вычисления

199
Величины
Понятие величины. Длина. Измерение длины. Единцы измерения длины.
Величина угла. Градусная мера угла. Синус, косинус и тангенс острого угла прямоугольного треугольника.
Понятие о площади плоской фигуры и ее свойствах. Измерение площадей. Единицы измерения площади.
Представление об объеме пространственной фигуры и его свойствах. Измерение объема. Единицы измерения объемов.
Измерения и вычисления
Инструменты для измерений и построений; измерение и вычисление углов, длин
(расстояний), площадей, вычисление элементов треугольников с использованием тригонометрических соотношений. Площади. Формулы площади треугольника, параллелограмма и его частных видов, трапеции, формула Герона, формула площади выпуклого четырехугольника, формулы длины окружности и площади круга. Площадь кругового сектора, кругового сегмента. Площадь правильного многоугольника.
Теорема Пифагора. Пифагоровы тройки. Тригонометрические соотношения в прямоугольном треугольнике. Тригонометрические функции тупого угла.
Теорема косинусов. Теорема синусов.
Решение треугольников. Вычисление углов. Вычисление высоты, медианы и биссектрисы треугольника. Ортотреугольник. Теорема Птолемея. Теорема Менелая.
Теорема Чевы.
Расстояния
Расстояние между точками. Расстояние от точки до прямой. Расстояние между фигурами.
Равновеликие и равносоставленные фигуры.
Свойства (аксиомы) длины отрезка, величины угла, площади и объема фигуры.
Геометрические построения
Геометрические построения для иллюстрации свойств геометрических фигур.
Инструменты для построений. Циркуль, линейка.
Простейшие построения циркулем и линейкой: построение биссектрисы угла, перпендикуляра к прямой, угла, равного данному.
Построение треугольников по трем сторонам, двум сторонам и углу между ними, стороне и двум прилежащим к ней углам, по другим элементам.
Деление отрезка в данном отношении.
Основные методы решения задач на построение (метод геометрических мест точек, метод параллельного переноса, метод симметрии, метод подобия).
Этапы решения задач на построение.
Геометрические преобразования
Преобразования
Представление о межпредметном понятии «преобразование». Преобразования в математике (в арифметике, алгебре, геометрические преобразования).
Движения
Осевая и центральная симметрии, поворот и параллельный перенос. Комбинации движений на плоскости и их свойства.
Подобие как преобразование
Гомотетия. Геометрические преобразования как средство доказательства утверждений и решения задач.
Векторы и координаты на плоскости
Векторы
Понятие вектора, действия над векторами, коллинеарные векторы, векторный базис, разложение вектора по базисным векторам. Единственность разложения векторов по базису, скалярное произведение и его свойства, использование векторов в физике.

200
Координаты
Основные понятия, координаты вектора, расстояние между точками. Координаты середины отрезка. Уравнения фигур.
Применение векторов и координат для решения геометрических задач.
Аффинная система координат. Радиус-векторы точек. Центроид системы точек.
История математики
Возникновение математики как науки, этапы ее развития. Основные разделы
математики. Выдающиеся математики и их вклад в развитие науки.
Бесконечность множества простых чисел. Числа и длины отрезков. Рациональные
числа. Потребность в иррациональных числах. Школа Пифагора
Зарождение алгебры в недрах арифметики. Ал-Хорезми. Рождение буквенной
символики. П.Ферма, Ф. Виет, Р. Декарт. История вопроса о нахождении формул корней
алгебраических уравнений степеней, больших четырех. Н. Тарталья, Дж. Кардано, Н.Х.
Абель, Э.Галуа.
Появление метода координат, позволяющего переводить геометрические объекты
на язык алгебры. Появление графиков функций. Р. Декарт, П. Ферма. Примеры различных
координат.
Задача Леонардо Пизанского (Фибоначчи) о кроликах, числа Фибоначчи. Задача о
шахматной доске. Сходимость геометрической прогрессии.
Истоки теории вероятностей: страховое дело, азартные игры. П. Ферма,
Б.Паскаль, Я. Бернулли, А.Н.Колмогоров.
От земледелия к геометрии. Пифагор и его школа. Фалес, Архимед. Платон и
Аристотель. Построение правильных многоугольников. Триссекция угла. Квадратура
круга. Удвоение куба. История числа π. Золотое сечение. «Начала» Евклида. Л. Эйлер,
Н.И.Лобачевский. История пятого постулата.
Геометрия и искусство. Геометрические закономерности окружающего мира.
Астрономия и геометрия. Что и как узнали Анаксагор, Эратосфен и Аристарх о
размерах Луны, Земли и Солнца. Расстояния от Земли до Луны и Солнца. Измерение
расстояния от Земли до Марса.
Роль российских ученых в развитии математики: Л.Эйлер. Н.И.Лобачевский,
П.Л.Чебышев, С. Ковалевская, А.Н.Колмогоров.
Математика в развитии России: Петр I, школа математических и навигацких наук,
развитие российского флота, А.Н.Крылов. Космическая программа и М.В.Келдыш.
2.2.2.8. Информатика
При реализации программы учебного предмета «Информатика» у учащихся формируется информационная и алгоритмическая культура;умение формализации и структурирования информации, учащиеся овладевают способами представления данных в соответствии с поставленной задачей - таблицы, схемы, графики, диаграммы, с использованием соответствующих программных средств обработки данных; у учащихся формируется представление о компьютере как универсальном устройстве обработки информации;представлениеоб основных изучаемых понятиях: информация, алгоритм, модель - и их свойствах;развивается алгоритмическое мышление, необходимое для профессиональной деятельности в современном обществе; формируютсяпредставления о том, как понятия и конструкции информатики применяются в реальном мире, о роли информационных технологий и роботизированных устройств в жизни людей, промышленности и научных исследованиях;вырабатываются навык и умение безопасного и целесообразного поведения при работе с компьютерными программами и в сети Интернет, умениесоблюдать нормы информационной этики и права.
Введение
Информация и информационные процессы

201
Информация – одно из основных обобщающих понятий современной науки.
Различные аспекты слова «информация»: информация как данные, которые могут быть обработаны автоматизированной системой, и информация как сведения, предназначенные для восприятия человеком.
Примеры данных: тексты, числа. Дискретность данных. Анализ данных.
Возможность описания непрерывных объектов и процессов с помощью дискретных данных.
Информационные процессы – процессы, связанные с хранением, преобразованием и передачей данных.
Компьютер – универсальное устройство обработки данных
Архитектура компьютера: процессор, оперативная память, внешняя энергонезависимая память, устройства ввода-вывода; их количественные характеристики.
Компьютеры, встроенные в технические устройства и производственные
комплексы. Роботизированные производства, аддитивные технологии (3D-принтеры).
Программное обеспечение компьютера.
Носители информации, используемые в ИКТ. История и перспективы развития.
Представление об объемах данных и скоростях доступа, характерных для различных видов носителей. Носители информации в живой природе.
История и тенденции развития компьютеров, улучшение характеристик компьютеров. Суперкомпьютеры.
Физические ограничения на значения характеристик компьютеров.
Параллельные вычисления.
Техника безопасности и правила работы на компьютере.
Математические основы информатики
Тексты и кодирование
Символ. Алфавит – конечное множество символов. Текст – конечная последовательность символов данного алфавита. Количество различных текстов данной длины в данном алфавите.
Разнообразие языков и алфавитов. Естественные и формальные языки. Алфавит текстов на русском языке.
Кодирование символов одного алфавита с помощью кодовых слов в другом алфавите; кодовая таблица, декодирование.
Двоичный алфавит. Представление данных в компьютере как текстов в двоичном алфавите.
Двоичные коды с фиксированной длиной кодового слова. Разрядность кода – длина кодового слова. Примеры двоичных кодов с разрядностью 8, 16, 32.
Единицы измерения длины двоичных текстов: бит, байт, Килобайт и т.д. Количество информации, содержащееся в сообщении.
Подход А.Н.Колмогорова к определению количества информации.
Зависимость количества кодовых комбинаций от разрядности кода. Код ASCII.
Кодировки кириллицы. Примеры кодирования букв национальных алфавитов.
Представление о стандарте Unicode. Таблицы кодировки с алфавитом, отличным от
двоичного.
Искажение информации при передаче. Коды, исправляющие ошибки. Возможность
однозначного декодирования для кодов с различной длиной кодовых слов.

Каталог: DswMedia
DswMedia -> Беседа с родителями: «Здоровые зубы». Кариес и его профилактика. Задачи
DswMedia -> Цель артикуляционной гимнастики
DswMedia -> Памятка для родителей «Правила проведения артикуляционной гимнастики»
DswMedia -> Нетрадиционные формы проведения артикуляционной гимнастики
DswMedia -> «Артикуляционная гимнастика с детьми»
DswMedia -> «развитие артикуляционного аппарата у детей»
DswMedia -> Занятие по правиловедению, а о чем пойдет речь, вы узнаете, отгадав загадку: Оля ядрышки грызет
DswMedia -> Чем помочь до приезда «Скорой» Как верно оценить ситуацию и грамотно помочь при самых острых приступах, когда дорога каждая минута. Гипертонический криз
DswMedia -> Пояснительная записка Хотелось бы более подробно остановиться на использовании в своей работе при проведении занятий с детьми с зпр таких нетрадиционных техник как
DswMedia -> Конспект занятия по конструированию из природного материала «Северный олень»


Поделитесь с Вашими друзьями:
1   ...   20   21   22   23   24   25   26   27   ...   36


База данных защищена авторским правом ©stomatologo.ru 2017
обратиться к администрации

    Главная страница