История вопроса



страница1/2
Дата28.12.2016
Размер0,67 Mb.
  1   2
МИОРЕЛАКСАНТЫ

Л. Л. Миронов,

кафедра скорой медицинской помощи и медицины катастроф

История вопроса


За последние 50 лет применение препаратов, блокирующих нервно-мышечную передачу, стало неотъемлемым компонентом анестезиологической практики. Впервые они были применены в 1942 г. в Монреале Гриффитом и Джонсоном для улучшения релаксации при циклопропановой анестезии. В качестве миорелаксанта ими был использован интокострин – смесь алкалоидов растения Chondrodendron tomentosum. До этого при общей анестезии применялись только ингаляционные анестетики (закись азота, эфир, циклопропан и хлороформ), что затрудняло выполнение некоторых оперативных вмешательств из-за недостаточной миорелаксации. Для достижения значительного расслабления мышц приходилось углублять анестезию, что способствовало частому развитию сердечно-сосудистых и респираторных осложнений. Единственной альтернативой в данном случае была местная анестезия. Годом позже Каллен (Cullen) описал опыт применения d-тубокурарина у 131 пациента, которым проводилась общая анестезия, где указал, что он вызывает более выраженную мышечную релаксацию, чем изолированное применение анестетиков. В 1946 г. в Ливерпуле Грэй и Холтон сообщили о своем опыте применения очищенного алкалоида тубокурарина более чем у 100 пациентов, получавших различные виды анестезии. В течение последующих 6 лет они составили полный перечень необходимых компонентов любой анестезиологической техники. Наиболее важными среди них были анестезия, аналгезия и мышечная релаксация – т.н. анестезиологическая триада. Контролируемая вентиляция в качестве четвертой составляющей анестезиологического пособия была добавлена позднее, когда была обоснована ее необходимость, позволяющая снизить, помимо всего прочего, и дозу требуемого релаксанта.

Тем не менее, в 1954 г. Бичер и Тодд опубликовали клинические данные, в которых отмечалось 6-кратное повышение летальности у пациентов, получавших миорелаксанты, по сравнению с теми, кто был оперирован без их применения. Это клиническое исследование создало незаслуженную негативную славу миорелаксантам и привело к спаду возрастающего было энтузиазма по применению препаратов этой группы, тем более, что клиническая фармакология имела о них очень неточные сведения. Такие печальные результаты первых лет применения миорелаксантов можно объяснить двумя причинами:



  • во-первых, в это время еще не было четкого понимания роли вспомогательной и контролируемой вентиляции во время анестезии;

  • во-вторых, в рутинной практике не была осознана необходимость строгого мониторирования параметров жизненно важных органов и систем пациента.

Однако в последующие годы вследствие получения более очищенных и улучшенных препаратов использование мышечных релаксантов стало важным компонентом анестезиологического пособия.

Так, в 1952 г. Theselff и Folders с сотрудниками внедрили в клиническую практику сукцинилхолин, который явился революционным препаратом в анестезиологии, обеспечивая более выраженный нейромышечный блок, очень быстрое начало действия и его короткую длительность, и, соответственно, значительно облегчая интубацию трахеи. В следующее десятилетие в практической анестезиологии появились синтетические и полусинтетические препараты, являвшиеся альтернативой d-тубокурарину: галламин, диметилтубокурарин, алкуроний. В 1967 г. Baird и Reid первыми сообщили о клиническом применении синтетического аминостероида панкурония. В начале 80-х годов появились два новых миорелаксанта средней длительности действия – атракурий и векуроний. В начале 1990 г. в США начали применяться два миорелаксанта длительного действия, практически не обладающие побочными эффектами: пипекуроний и доксакурий. Кроме того, в арсенале анестезиолога появился недеполяризующий миорелаксант короткого действия, который гидролизируются холинэстеразой плазмы (мивакурий) и препарат средней длительности действия – рокуроний.


Физиология нейромышечной передачи




Ацетилхолин (АХ), являющийся передатчиком (нейротрансмиттером) в нервно-мышечном сочленении, синтезируется из холина и ацетил-кофермента А с участием холинацетилтрансферазы и хранится в везикулах нервного окончания (рис. 1).
Рис. 1. Схема строения нейромышечного окончания.
Нервный импульс (потенциал действия) вызывает деполяризацию нервного окончания, что сопровождается высвобождением АХ. Деполяризация и высвобождение АХ происходят после вхождения в клетку нервного окончания ионов кальция. Поступления потенциала действия вызывает перемещение везикул в активные зоны, расположенные в аксональной мембране. В этих зонах везикулы сливаются с мембраной, высвобождая АХ в синаптическую щель. В каждом нервном окончании имеется около тысячи активных точек, и поступление каждого потенциала действия приводит к опорожнению 200-300 везикул. Кроме того, небольшие кванты АХ, предположительно эквивалентные содержимому одной везикулы, вскрываются в синаптическую щель спонтанно, вызывая минипотенциалы концевой пластинки (МПКП) на постсинаптической мембране, однако этого недостаточно для генерации мышечного ответа на данный стимул. Точки активного выброса АХ располагаются точно напротив АХ-рецепторов на складках постсинаптической мембраны, лежащей на поверхности мышцы. Синаптическая щель (пространство между нервным окончанием и мышечной мембраной) имеет ширину всего 60 нм. В ней содержится фермент ацетилхолинэстераза, разрушающая АХ после выполнения им своей роли – передачи нервного импульса на мышцу. Этот фермент (и в более высоких концентрациях) присутствует и в складках постсинаптической мембраны. Холин, высвобождающийся при разрушении АХ, проходит через пресинаптическую мембрану назад для повторного использования в синтезе АХ.

На постсинаптической мембране в области синаптических складок находятся никотиновые АХ-рецепторы, которые организованы в отдельные группы (кластеры). Каждый кластер (около 0,1 мкм в диаметре) содержит несколько сотен рецепторов. Каждый рецептор состоит из пяти субъединиц, две из которых идентичны (α-субъединицы с мол. массой 40 000 дальтон). Остальные три имеют несколько больший размер и обозначены как β-, δ- и ε- субъединицы. В мышцах плода вместо ε – субъединицы находится γ-субъединица. Каждая субъединица представляет собой гликолизированный протеин (цепочку аминокислот), закодированную тем или иным геном.



Рецепторы представлены в виде своеобразных цилиндров, пронизывающих мембрану и имеющих в центре канал – ионофор, который обычно закрыт. Каждая α-субъединица имеет на своей поверхности одну зону связывания АХ, которая также способна связываться и с нейромышечными блокаторами (рис. 2).



Рис. 2. Примерная схема строения АХ-рецепторов.
Для активации рецептора обе α-субъединицы должны быть заняты; это приводит к структурному изменению рецепторного комплекса, что вызывает открытие центрального канала (ионофора) между рецепторами на очень короткое время – около 1 мс (рис. 3).



Рис. 3. Схема активации АХ-рецептора.
При открытии ионофора начинается перемещение катионов Na+, K+, Ca2+ и Mg2+ в соответствии с их концентрационными градиентами, т.е. калий и магний будут выходить из клетки, а кальций и натрий – входить в нее. Основное изменение заключается в притоке Na+ (ток в зоне концевой пластинки) с последующим оттоком K+. Такое перемещение ионов через большое количество рецепторных каналов в итоге понижает трансмембранный потенциал в области концевой пластинки, вызывая ее деполяризацию и генерируя мышечный потенциал действия, что приводит к мышечному сокращению.

В состоянии покоя трансмембранный потенциал составляет примерно -90 мВ (заряд с внутренней стороны мембраны отрицательный). В нормальных физиологических условиях деполяризация происходит при снижении трансмембранного потенциала до -50 мВ. Как только потенциал концевой пластинки достигает этого критического порога, запускается потенциал действия «все или ничего», который проходит по всей сарколемме, активируя процесс мышечного сокращения посредством выброса Ca2+ из саркоплазматического ретикулума. Зона концевой пластинки деполяризуется всего лишь на несколько миллисекунд, после чего происходит ее реполяризация и она вновь готова к передаче следующего импульса.

Каждая молекула АХ участвует в открытии одного ионного канала только до момента ее быстрого разрушения ацетилхолинэстеразой; молекулы АХ не взаимодействуют с какими-либо другими рецепторами. Факторами определенной гарантии нейромышечной передачи являются большое количество высвобождающегося АХ и число свободных постсинаптических АХ-рецепторов. Надо сказать, что АХ выбрасывается значительно больше, нежели этого требуется для запуска потенциала действия в нейро-мышечном соединении.

АХ-рецепторы присутствуют и в пресинаптической мембране. Как предполагается, существует механизм положительной обратной связи для стимуляции высвобождения АХ. Некоторые из высвободившихся молекул АХ возвращаются к пресинаптической мембране, стимулируя указанные пресинаптические рецепторы и обусловливая перемещение везикул с АХ к активным зонам аксональной мембраны. У здоровых людей постсинаптические АХ-рецепторы находятся только в нейромышечном синапсе; при многих патологических состояниях, поражающих нейромышечные соединения, АХ-рецепторы развиваются и на прилегающей поверхности мышцы. Избыточный выброс калия из больных или отечных мышц при введении сукцинилхолина, по-видимому, является результатом стимуляции этих внесинаптических рецепторов. Они появляются при многих состояниях, таких как полинейропатии, тяжелые ожоги, мышечная патология.




: downloads -> skoraia pomosch
downloads -> Министерство здравоохранения республики беларусь
downloads -> Тема: Некариозные поражения твердых тканей зубов: наследственные нарушения, изменения цвета, тауродонтизм. Диагностика, возможности лечения и профилактики у детей
downloads -> Тема занятия
downloads -> Проявления в полости рта бактериальных заболеваний дифтерия, скарлатина
downloads -> Тема: Поражение слизистой оболочки полости рта при вирусных заболеваниях у детей. Роль врача-стоматолога в диагностике, лечении и профилактике
skoraia pomosch -> Интенсивная терапия острой почечной недостаточности у детей


  1   2


База данных защищена авторским правом ©stomatologo.ru 2017
обратиться к администрации

    Главная страница